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Features of the diffusion-time dependence of the diffusion-weighted magnetic resonance imaging (MRI) sig-
nal provide a new contrast that could be altered by numerous biological processes and pathologies in tissue
at microscopic length scales. An anomalous diffusion model, based on the theory of Brownian motion in frac-
tal and disordered media, is used to characterize the temporal scaling (TS) characteristics of diffusion-related
quantities, such as moments of the displacement and zero-displacement probabilities, in excised rat
hippocampus specimens. To reduce the effect of noise in magnitude-valued MRI data, a novel numerical pro-
cedure was employed to yield accurate estimation of these quantities even when the signal falls below the
noise floor. The power-law dependencies characterize the TS behavior in all regions of the rat hippocampus,
providing unique information about its microscopic architecture. The relationship between the TS character-
istics and diffusion anisotropy is investigated by examining the anisotropy of TS, and conversely, the TS of an-
isotropy. The findings suggest the robustness of the technique as well as the reproducibility of estimates. TS
characteristics of the diffusion-weighted signals could be used as a new and useful marker of tissue
microstructure.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Understanding developmental and pathological changes in biologi-
cal tissues relies on performing a detailed examination of the underly-
ing microstructural alterations. The MR measurement of translational
self-diffusion of the ubiquitous water molecule provides an indirect
method to study local microscopic structure. The sensitivity of
diffusion-weighted MRI (DWI) to the microscopic environment has
made it an indispensable tool for the examination of neural tissue,
proven by its sensitivity to an ever increasing number of pathologies af-
fecting the brain and spinal cord (de Carvalho Rangel et al., 2011).

Although each conventional diffusion-weighted MR image does not
possess resolution at the cellular level, a collection of such images none-
theless enables one to quantify attributes of the underlyingmicroscopic
architecture. For example, by acquiring a series of diffusion-weighted
signals with different diffusion sensitization obtained by varying the
wavenumber, q, and subsequently transforming the data, one can
rights reserved.
directly quantify the dispersion profiles associated with diffusion of
water molecules (Cory and Garroway, 1990) using a method called
q-spaceMR. Another important independent quantity one can adjust
is time during which diffusion is observed, which determines the
distances probed by the molecules (Latour et al., 1994; Pfeuffer et
al., 1998; Sen, 2004).

Diffusion acquisitions obtained by independently varying the
wavenumber and diffusion time, were used, in conjunction with a dif-
fusion model of Brownian motion taking place in disordered media
and fractals, to characterize the temporal and spatial dependence of
diffusion propagators in red blood cells, normal human brain tissue,
and a specimen of glioblastoma tumor (Özarslan et al., 2006b). More-
over, variations in the parameters quantifying the temporal scaling
(TS) behavior were shown to exist, suggesting this method's potential
to generate new contrast.

As in many different areas of science (Mandelbrot, 1982), fractal
concepts have been used to model neural tissue from cellular
(Caserta et al., 1990; Smith et al., 1989) to voxel and organ levels
(Kiselev et al., 2003); such an approach is justified due to the ex-
tremely complicated architecture of neural tissue. Indeed, neural tis-
sue exhibits a great deal of self-similarity across different length
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scales (Lichtman and Denk, 2011). When the distances that could be
probed by DWI are concerned, the influence of macromolecules, cyto-
skeleton, cell membranes, and myelin needs to be considered. The
temporal dependence of the variance of distances (i.e., mean-
squared displacements) probed by randomly moving molecules in
fractal environments is known to deviate from its normal linear be-
havior due to the presence of restrictions exhibited at many different
length scales. Hence, Brownian motion taking place in fractal media is
referred to as anomalous diffusion. Anomalous diffusion has been ob-
served in many different environments (Gefen et al., 1983) including
biological tissues and in very different contexts (Langlands and
Henry, 2010). The proposal of using the MR technique, as an exquisite
probe of molecular diffusion, to measure anomalous diffusion within
disordered media has been made since the 1980s in theoretical stud-
ies (Banavar et al., 1985; Jug, 1986; Kärger et al., 1988; Widom and
Chen, 1995; Zavada et al., 1999). MR measurements have been per-
formed in model systems (Klemm et al., 2002; Müller et al., 1996),
sand grains (Stallmach et al., 2002), as well as in lung tissue
(Kveder et al., 1988) and duck embryos (Cheng, 1993).

Following a very different line of thought, diffusion in biological
tissues (carcinomas, fibrous mastopathies, adipose and liver tissue)
has been modeled via Lévy alpha-stable distributions (Köpf et al.,
1996). The corresponding MR signal attenuation is given in terms of
a stretched exponential (Kohlrausch–Williams–Watts, KWW) func-
tion (Kohlrausch, 1847). Such processes are characterized by statisti-
cal moments that diverge, hence it is not meaningful to quantify the
temporal scaling of the variance. This approach has recently been ap-
plied to neural tissue (Gao et al., 2011; Hall and Barrick, 2008; Magin
et al., 2008; Santis et al., 2011; Zhou et al., 2010). As described in
more detail in the Discussion section, the models based on the
stretched exponential function differ fundamentally from the
fractal-based ones.

In yet another approach, the asymptotic behavior of the q-
dependence of the MR signal attenuation curve can be described by
a power-law (Köpf et al., 1996), which can be considered a generali-
zation of the Debye–Porod law for MR acquisitions (Sen et al., 1995).
The Rigaut-type asymptotic fractal expression (Rigaut, 1984; Rigaut
et al., 1998) has been used to capture the power-law decay from
the signal attenuation curves (Köpf et al., 1998). More recently, such
a dependence was shown to possibly originate from a sample of diffu-
sion tensors drawn from aWishart distribution (Jian et al., 2007); this
finding was used to address the neuronal connectivity problem from
multi-directional DWI acquisitions.

In this work, we follow the theory of diffusion in disordered media
and fractal environments and continue the approach taken by
Özarslan et al. (2006b). We use the technique on DWI data sets, and
the resulting TS contrast is assessed within excised hippocampi,
whose microstructure was previously studied using diffusion tensor
imaging (DTI) (Shepherd et al., 2006, 2007). In the next section, we
provide a brief overview of the theory of diffusion in disordered
media and its MR measurement with minor extensions in the model-
ing framework of Özarslan et al. (2006b). MR imaging protocol and a
number of computational tools employed to accurately compute the
TS parameters are presented in the following section and the associ-
ated appendices. The results of the TS characteristics, the contrast
based on the TS parameters, and the interplay of diffusion anisotropy
with TS behavior are presented in the Results and Discussion sections.

Theory

In this paper, we use the method introduced by Özarslan et al.
(2006b) with minor extensions. The technique follows the theory of
diffusion in fractals and disordered systems, a comprehensive review
of which can be found elsewhere, e.g., Havlin and ben Avraham
(2002). A brief review of the relevant theory is included in this sec-
tion for completeness.
In disordered media and fractals, the temporal dependence of the
diffusional mean-squared displacement (〈r2〉) is known to deviate
from linearity (Gefen et al., 1983). For this dependence, a power-
law is observed in deterministic fractals (O'Shaughnessy and
Procaccia, 1985), which accurately describes the temporal scaling
(TS) behavior of diffusion in more realizable environments over a
considerable range of length and time scales. For example, Saxton
(2007) has shown that, in biological media, the presence of a hierar-
chy of binding sites leads to a wide anomalous diffusion regime.

Generally speaking, this power-law can be expressed through the
relationship

r2
D E

∝t2=dw ; ð1Þ

where t is the diffusion time, and dw is the fractal dimension of the
diffusion process, which can be considered to be a “statistical fractal.”
This point follows from the self-similarity of the random walks; a dis-
crete step taken at one time-point can be envisioned to be the sum of
net displacements taken during smaller time intervals. The above
scaling relationship provides a means to categorize different diffusion
processes. For “normal” (e.g., Gaussian) diffusion, dw is exactly 2,
which leads to the linear dependence of 〈r2〉 on diffusion-time men-
tioned earlier. When the mean-squared displacements increase
more rapidly, i.e., dwb2, the process is considered to be in the super-
diffusive regime. The opposite case of dw>2 is encountered in a sub-
diffusive process.

Besides the mean-squared displacement, another quantity whose
scaling relationship is of interest is the return to the origin probability
(RTOP), which is the likelihood of molecules to undergo zero net dis-
placement during the diffusion time. The relevant relationship is
given by

RTOP ∝t−ds=2; ð2Þ

where ds is referred to as the spectral or fracton dimension
(Alexander and Orbach, 1982), which quantifies the scaling behavior
of the density of states for the Laplacian operator. Within the context
of random walks on a discrete lattice, this operator is related to the
number of distinct sites visited by the random walker.

Both dw and ds depend on characteristics of the diffusion process
taking place within the fractal medium; as such, they are referred to
as dynamic exponents. In contrast, the fractal dimension, denoted
by df, is a static exponent describing the scaling of the mass of the en-
vironment with distance. Remarkably, in deterministic fractals, the
two dynamic exponents are related to df through the simple relation-
ship

df ¼
dwds
2

: ð3Þ

It should be noted that these quantities have tremendously important
implications for transport processes in complex media (Condamin et
al., 2007).

A diffusion propagator of the following form possesses all of the
scaling relationships described so far (O'Shaughnessy and Procaccia,
1985):

P r; tð Þ ∝ rdf−d

tds=2
Φ

r
t1=dw

� �
; ð4Þ

where d is the dimension of the embedding (free) space, which is in-
variably 3 for our purposes, andΦ is some function whose exact form
does not affect the scaling relationships. Comparison of the above ex-
pression to the three-dimensional Gaussian propagator reveals that
the “normal” values for ds and df are 3 as well.
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Note that the above form for the propagator makes a number of
assumptions that we shall relax to accommodate more general diffu-
sion processes that are observed in gray-matter. First of all, the above
propagator assumes the diffusion process to be isotropic. Second, any
even-order moment of the displacements is implied to be related to
dw, which is a consequence of the following relationship, which
holds for the mth-order radial moment:

rm
� �

∝tm=dw : ð5Þ

For the time being, we shall focus on measuring diffusion along a
single direction, taken to be the z-direction, which is determined by
the orientation of the diffusion sensitizing gradients. The data are ac-
quired in a space reciprocal to the displacement space, with the
wavenumber q=(2π)−1γδG, where γ is the gyromagnetic ratio and
δ is the duration of the diffusion gradients whose magnitude is
denoted by G. When only one radial line in q-space is sampled, it is
meaningful to consider a one-dimensional propagator through an in-
verse Fourier transform of such one-dimensional q-space data, which
is given by

P1 z;Δð Þ ¼ ∫∞
−∞

E q;Δð Þei2πqzdq; ð6Þ

where Δ is the separation of the two gradient pulses and thus repre-
sents the diffusion-time, while E(q,Δ) is the MR signal attenuation
profile (i.e., the q-space signal values divided by the signal at q=0)
for this diffusion-time. It follows from this expression that the MR sig-
nal can be written in terms of the moments of this one-dimensional
propagator through the relationship

E qð Þ ¼ 1−2π2q2 z2
D E

þ 24

4!
π4q4 z4

D E
−26

6!
π6q6 z6

D E
�…; ð7Þ

where we assumed that the propagator is symmetric, i.e., all odd-order
moments vanish. The one-dimensional propagator defined in Eq. (6) is
just the projection of the three-dimensional displacement probability
onto the axis specified by the gradient orientation. As discussed in detail
by Özarslan et al. (2009), in isotropic spaces, the three-dimensional
propagator can be obtained from its one-dimensional projection. The
moments of the two propagators are also related. For example, the sec-
ond moment is simply 〈r2〉=〈x2+y2+z2〉=3〈z2〉. Therefore, 〈z2〉 is
proportional to Δ2/dw as well. However, in more general cases, one can
still expect similar scaling relationships for the projected propagator.
In fact, it was shown in Özarslan et al. (2006b) that scaling relationships
implied by the following form of the propagator describe the temporal
evolution of the diffusion process well:

P1 z;Δð Þ∝ zd
′
f−1

Δd′s=2
Ψ

z
Δ1=dw

� �
; ð8Þ

where d′s is the parameter for the projected propagator corresponding
to ds, and Ψ is a well-behaved function of its argument. On the other
hand, d′f is defined through the expression

d′f ¼
dwd

′
s

2
; ð9Þ

which is analogous to Eq. (3). Note that the “normal” values for d′s
and d′f are 1. The value of d′s can be estimated by exploiting the
time dependence of the probability for zero net displacement along
the z-axis through the relationship

P1 0;Δð Þ∝Δ−d′s=2: ð10Þ

In this work, we go one step further and relax the requirement
that 〈zm〉∝Δm/dw, which is implied by Eq. (8). Instead, we allow for
the possibility that the temporal scaling of the higher order moments
is described by different exponents, i.e.,

zm
� �

∝Δm=dm : ð11Þ

Clearly, d2=dw.
We shall quantify the TS descriptors, dm, for m=2, 4, 6, and 8,

along with d′s and ds. For this purpose, we need to relate the q-
space signal profiles to the quantities 〈z2〉, 〈z4〉, 〈z6〉, 〈z8〉, P1(0), and
RTOP for different values of the diffusion time. As discussed in
Özarslan et al. (2011), these quantities can be linked to the q-space
data profile, denoted by E(q), through the expressions

zm
� � ¼ im

2πð Þm
dmE qð Þ
dqm q¼0

;

���� ð12Þ

P1 0ð Þ ¼ 2∫∞
0E qð Þdq; ð13Þ

RTOP ¼ 4π∫∞
0
E qð Þq2dq: ð14Þ

Note that Eq. (14) holds only when the signal is perfectly isotropic.

Methods

MR image acquisition

To investigate the temporal scaling (TS) behavior of diffusional
processes in neural tissue, we acquired a series of diffusion-
weighted MR images from four excised rat hippocampi with varying
diffusion gradient strengths and diffusion times. Prior to imaging,
rats were perfusion-fixed with 4% formaldehyde. The hippocampi
were dissected medially from each hemisphere and immersed in
fresh fixative for 8–10 days, then washed overnight in phosphate-
buffered saline (PBS, with pHb7.4) prior to imaging. Samples were
imaged inside an NMR tube containing PBS. Temperature was main-
tained throughout the experiments using the temperature control
unit of the magnet previously calibrated by methanol spectroscopy.
Samples were imaged with a 5 mm birdcage coil inside a 600 MHz
narrow-bore spectrometer with a Bruker Avance console. These ex-
periments were performed with the approval of the University of
Florida Institutional Animal Care Committee (IACUC).

The first sample, whichwe refer to as “sample A,”was imaged using a
pulsed gradient stimulated-echo pulse sequence with the following pa-
rameters: TR=1000ms, TE=12.6 ms, bandwidth=35 kHz, resolu-
tion=(78×78×500)μm3, matrix size=(64×64), number of slices=4,
diffusion gradient pulse duration (δ)=2ms. Images were acquired
with 32 different diffusion gradient strengths increasing from 91.75 to
2935 mT/m in steps of 91.75 mT/m, yielding a resolution of 4 μm in the
displacement domain. The gradients were applied along the slice direc-
tion. This q-space acquisition scheme was repeated for 5 values of diffu-
sion pulse separation (Δ) between 12 and 210 ms evenly spaced on a
logarithmic scale. The number of averages was increased from 6 to 14
for increasing diffusion time values to produce images with comparable
quality at different diffusion times. The experiments were performed at
17 °C. Fig. 1 shows DWI data for all diffusion-time points (top to bottom)
and every third gradient strength (left to right).

In addition to the q-space acquisition described, the same speci-
men underwent a series of four diffusion tensor imaging (DTI) scans
(Basser et al., 1994). The diffusion times were 12.0, 24.5, 103, and
210 ms for these DTI acquisitions, respectively. Each data set con-
sisted of a total of 27 scans, 6 of which were at low diffusion-
weightings, while the remaining 21 were collected with different gra-
dient orientations at the b-value of 1280 s/mm2. The 6 gradient direc-
tions for the lower diffusion weighting were determined by the
vertices of an icosahedron residing on one of the hemispheres.



Fig. 1. Diffusion weighted MR images of an excised rat hippocampus (sample A) with varying q-values and diffusion times. All five diffusion time points were included, whereas
every third q-value, starting from the second, is included.
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Similarly, the 21 gradient directions for the greater diffusion-
weighting were computed from the first order tessellation of the ico-
sahedron. The number of averages was varied between 8 and 20 as
the diffusion time was prolonged. All other parameters were identical
to those for the q-space acquisitions described above.

To assess the reproducibility of the TS features at physiologically
more relevant conditions, the remaining three specimens, referred
to as samples “B1,” “B2,” and “B3,” were imaged at 37±0.2 °C using
a similar protocol. The gradient encoding scheme was identical to
that for sample A. However, 8 diffusion time values were used rang-
ing from 12 to 147 ms evenly spaced on a logarithmic scale. The num-
ber of experiments was varied between 4 and 8 to reduce the effects
of noise at longer diffusion times. To prevent the bias that can be in-
troduced by processes that may occur during the course of the exper-
iment, the ordering of experiments with different Δ values was
random.
Computation of the TS exponents

The estimation of the TS exponents described in the Theory sec-
tion proves to be a challenging task when there is significant noise
in the data, which is expected to be the case in conventional DWI ac-
quisitions. This fact can be appreciated from an examination of Fig. 1
which illustrates the quick disappearance of the signal particularly at
longer diffusion times for Sample A. The problem is more severe for
Samples B1–3 because of the faster diffusion rate at the higher
temperature.

Of particular concern is the estimation of d′s and ds exponents that
rely on an accurate estimation of integrals over the entire q-axis (see
Eqs. (13) and (14)). When magnitude valued data are used, computa-
tion of these integrals is problematic because they would diverge due
to the finite value of the “noise floor”—the expected value of pure
noise. Moreover, since the noise variance in magnitude data is
signal-dependent (Koay and Basser, 2006), the influence of noise is
different at different diffusion times. Consequently, any bias intro-
duced by noise is expected to shift the estimates of the TS parameters.
To overcome these issues, we devised a multi-step procedure that
unifies some recent developments in the identification of noise
(Koay et al., 2009b) and handling of noisy magnitude signals (Koay
et al., 2009a) as well as the representation of q-space signals
(Özarslan et al., 2008a).

Our goal is to produce voxel-by-voxel estimates of the TS param-
eters from the five-dimensional (three spatial, one temporal, and
one q-space dimensions) data sets. Fig. 2 shows the results of our nu-
merical scheme for an arbitrary voxel of the data set obtained from
the B1 sample.

Our strategy involves the following steps:

1. For each of the time points, the images from one slice, resulting in
a three-dimensional array (with two spatial and one q-space), are
fed into our PIESNO (probabilistic identification and estimation of
noise) framework developed in Koay et al. (2009b), which auto-
matically identifies the noise-only regions in a group of images,
and provides an accurate estimate for the standard deviation of
the underlying Gaussian noise. Note that noise characteristics do
not vary from slice to slice. Although all slices could be fed into
the algorithm, one slice was sufficient to provide accurate
estimates.

2. For each voxel of the image, we estimate the signal profile using an
extension of the 1D-SHORE (one-dimensional simple harmonic os-
cillator based reconstruction and estimation) method to include
regularization as described in detail in Appendix A. The 1D-
SHORE framework represents the E(q) profile in an orthogonal
basis of Hermite functions, and was shown to provide very accu-
rate interpolations and reasonable extrapolations of the signal.
The estimation of the parameter, u, determining the stiffness of
the spring, thus the breadth of the basis functions, was accom-
plished using a scheme similar to that in Özarslan et al. (2011).
More details can be found in Appendix A. N, which determines
the number of basis functions to be used, was set to 10. This step
produces a meaningful “mean value” for the noisy magnitude sig-
nal. This estimate is shown via the continuous black line in the
large plot in Fig. 2, which is estimated from the original discrete
magnitude valued samples depicted by the black dots.

3. The estimates for the mean values obtained from the previous step
were fed into the scheme developed to “break the noise floor”
(Koay et al., 2009a), which produces discrete signal values without



magnitude signal and
its 1D-SHORE representation

bias-corrected signal and
its 1D-SHORE representation:

positive sections
negative sections

Fig. 2. Results of the scheme used to remove the noise-induced bias on the estimates is illustrated for a randomly selected voxel, which is shown by the yellow dot on the hippo-
campus image belonging to sample B1. The large plot shows the original magnitude-valued data points (black filled circles), its 1D-SHORE representation (black curve), the bias-
corrected signal (red solid diamonds), and its 1D-SHORE representation (red curve) for the shortest diffusion time. Also provided are the magnitude-valued data points and the 1D-
SHORE representation of the bias-corrected signal for other diffusion times. Note that the latter can assume negative values, which cannot be shown using logarithmic plots. There-
fore, the absolute value of the negative sections of the resulting curves is plotted via red dotted curves.
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any bias introduced by the Rician character of the magnitude val-
ued data. The results are depicted by red diamonds in the large
panel of Fig. 2. As shown by Koay et al. (2009a) the noise in
these transformed data is Gaussian, hence the transformed signal
can assume negative values, e.g., when the underlying noise-free
signal intensity is smaller than the additive Gaussian noise.

4. The 1D-SHORE estimation (step 2) is repeated for the Gaussian sig-
nals, which results in a continuous representation of the signal
values without bias due to the magnitude noise, which has been
inappropriately called Rician noise. The resulting continuous rep-
resentation is shown by red lines in Fig. 2.

5. The1D-SHORE coefficientswere used in the estimation of even-order
moments of displacement distribution and zero-displacement proba-
bilities. The necessary analytical relationships linking the 1D-SHORE
coefficients to these quantities are provided in Appendix B.

6. The above computations were repeated for all diffusion times and
voxels of the image within the hippocampus. The end result in-
cludes four-dimensional (three spatial and one temporal) arrays
of 〈z2〉, 〈z4〉, 〈z6〉, 〈z8〉, P1(0), and RTOP.

7. The power-laws in Eqs. (2), (10), and (11) imply a linear depen-
dence of the logarithm of each of the above quantities on the log-
arithm of the diffusion time. Therefore, a linear regression
routine was used to estimate the relevant TS parameters by fitting
a line to these data. IDL's robust linear fitting routine “LADFIT” was
used to remove any inaccuracy due to outliers, which could result
from unjustifiable values for the quantities. Such robust fitting was
observed to be necessary almost exclusively for the RTOP values,
which were used in the estimation of ds. Fig. 3 illustrates the linear
fits for the same voxel used in Fig. 2 to illustrate the signal trans-
formational framework.

It is instructive to discuss Fig. 2 to understand the effects of the
signal transformational framework presented in steps 2–4. The origi-
nal magnitude valued signal values (black dots) and the final 1D-
SHORE representation of the transformed Gaussian-distributed data
points (red lines) are shown for all eight values of the diffusion
time. Since the latter can assume negative values, it was necessary
to plot the absolute value of these curves. However, we used dotted
lines to depict the negative sections of the curves as was done previ-
ously to illustrate the negative signal values predicted for double
pulsed field gradient (double-PFG) experiments (Özarslan, 2009;
Özarslan and Basser, 2007). In this figure, the result of step 2, which
involves the 1D-SHORE of the signal before transformation is shown
in the large plot corresponding to the shortest diffusion time. It
should be noted that the computational approach taken does a superb
job of estimating the signal at smaller q-values, which is necessary for
the accurate estimation of the moments. Moreover, at larger q-values,
i.e., when the signal is relatively small, the signal transformational
framework yields a curve that decays much faster than what the orig-
inal data points would imply. In most cases, the scheme introduces an
oscillatory tail with zero-crossings, which, unlike in the case of the
double-PFG acquisitions mentioned above, are likely to be spurious.
However, since this oscillation is around the zero-value, evaluation
of integrals over the horizontal axis yields significant cancellations,
which are expected to improve the estimates of the quantities P1(0),
and RTOP.

The linear fitting employed in the last step of the above procedure
further prevents the influence of any unexpected value on the final
estimate of the relevant TS parameter.

Results

Adequacy of the model

Fig. 3 illustrates the linear correlation coefficients for the sample
B1, which are found to be very close to 1 for all parameters; this is
an exciting finding that demonstrates the adequacy of the power-
law dependencies hypothesized in the Theory section for all regions
of the rat hippocampus. The biggest deviation for the absolute value
of the correlation coefficient from its ideal value of 1 is observed for
the ds estimation; however, this is likely to be the consequence of
the q2 factor in the integrand of Eq. (2), which makes the evaluation
of this integral very challenging when the range of q-values with sig-
nificant signal is limited.



Linear Correlation Coefficients
for Estimations of

dw d4 d6

d8 ds’ ds

0.85      1

Fig. 3. Plots illustrate the fits employed to estimate various TS exponents for the same voxel used in Fig. 2. The temporal dependence of the second, fourth, and sixth order moments
yields the parameters dw, d4, and d6, respectively. The parameter d′s is obtained from the scaling behavior of the return to the xy-plane probability. Similarly, ds is computed from the
time-dependence of the return-to-origin probability (RTOP), which is estimated under the assumption that diffusion is isotropic. The images overlaid on the gray background are
the absolute value of the linear correlation coefficients for the B1 specimen indicating the robustness of the hypothesized power-law dependence throughout the rat hippocampus.
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Contrast in the TS parameters

The images of the TS parameters are shown in Fig. 4A. Some con-
trast within the rat hippocampus is clearly evident in these images. To
enable comparisons, we show the apparent diffusion coefficient
(ADC) maps for each of the five diffusion times computed from the
low-q part of the attenuation curves in panel B, and the results
obtained from the DTI-acquisition (with Δ=24.5 ms) for the same
specimen are depicted in panel C. There appear to be three tissue
types in the TS maps: (i) Three white-matter structures of fimbria,
alveus, and dorsal hippocampal commissure (labeled on the fraction-
al anisotropy map). These regions are known to have highly coherent,
traditional white matter histology. On DTI maps (Basser and Pierpaoli,
1996), these areas are characterized by their high anisotropy and low
mean diffusivity values (Shepherd et al., 2006). (ii) The granule cell
and pyramidal cell layers (labeled on the d′s map). These regions
are composed of densely packed neuronal cell bodies and apical and
basal dendrites. The DTI results reveal that these regions have inter-
mediate anisotropy and high diffusivity. (iii) All other hippocampal
regions composed of a more homogeneous mixture of neurons, glia
and neuropil, which have intermediate diffusivity and anisotropy. In
these ‘molecular’ areas of the hippocampus, dw values are tightly clus-
tered around 2.0 indicating normal diffusion. The d4, d6, and d8 maps
yield qualitatively similar contrast to that provided by the dw index.
The contrast in the d′s and ds images also seems similar, though
inverted, to that in the dw map. Interestingly, the contrast between
the granule and pyramidal cell layers (ii) and remaining gray-
matter regions (iii) disappears in the d′f and df maps, whereas some
contrast with the fimbria region prevails.

The contrasts provided in the TS-parameter maps are different
from those provided by the ADC maps in Fig. 4B and the DTI-
derived parameter maps in Fig. 4C. The ADC map for the shortest dif-
fusion time appears similar to the dw map. However, even in this map
differences can be observed, most notably, in the stratum lacunosum-
moleculare region of the hippocampus. Note how the ADC maps
evolve as the diffusion time is increased in Fig. 4B. A comparison of
the pyramidal neurons and SLM regions reveals how differently
these two regions behave as the diffusion time is varied. Specifically,
the SLM region remains hyperintense throughout, but the region with
pyramidal neurons start hyperintense at short diffusion time and end
up hypointense at the long diffusion time, suggesting a higher rate at
which ADC is decaying. Our model enables the quantification of this
difference by characterizing the rate of temporal change, which can-
not be captured by looking at the diffusivity values at a particular dif-
fusion time as in individual ADC or MD maps. The direction encoded
color (DEC) map (Pajevic and Pierpaoli, 1999) reveals that the orien-
tational preference of diffusion varies significantly throughout differ-
ent regions of the hippocampus. Although we have one-dimensional
sampling of the q-space, the contrast obtained from the TS parame-
ters appears to be independent of this orientational dependence of
the anatomy. The relationship between the TS parameters and anisot-
ropy will be discussed in more detail below.

Reproducibility of the TS parameters

Fig. 5 shows maps of the three most important TS-parameters for
the B1, B2, and B3 data sets (from top to bottom). It is clear that the
contrast in these maps (and others, which are not shown) is very sim-
ilar to that obtained for specimen A. The only difference seems to be
in the fimbria region of the ds and df, which may be attributed to par-
tial volume effects and dissection injury. Perhaps more important is
the consistency of the generated maps across the three samples in
this figure. This consistency demonstrates the reproducibility of the
TS parameters as well as the robustness of the estimation methods.
Therefore, these results indicate that the method can be used for pop-
ulation studies.

Anisotropy of TS

It should be noted that the estimation of the TS exponent dw re-
quires the computation of the second order moment of the displace-
ments, which can be obtained from the data at low q-values (see
Eq. (12)). In fact, the mean-squared displacement is simply equal to
2DΔ, where D is the apparent diffusion coefficient. When the environ-
ment is anisotropic, the diffusion coefficient D exhibits orientational
dependence, which can be expressed in terms of the diffusion tensor,
D, to be D(v)=vTDv, where v is a unit vector. Therefore, a series of
DTI acquisitions with different diffusion times can be used to
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characterize both the orientational and temporal dependence of the
diffusion process. We first investigated whether dw estimates were
anisotropic. The top row of Fig. 6 illustrates the dw maps for three dif-
ferent orientations of v along with that obtained from the trace of the
diffusion tensor. The corresponding maps of the correlation coeffi-
cients are included in the second row of panel A. Some sensitivity of
the dw estimates on the orientation is evident. Most notably, the con-
trast between the region with pyramidal neurons and the surround-
ing tissue disappears when the local preference of diffusion (as
suggested by the DEC map in Fig. 4C) coincides with v even though
there is no anisotropy or orientation contrast between these regions.
The most significant contrast is evident when v points through the
plane, i.e., when it is consistently perpendicular to the orientational
preference of diffusion.

Note the poorer performance of the fit in white-matter structures
for directions perpendicular to the orientation of the fibers. This is
thought to be due to the limited ability of DTI with the current acqui-
sition parameters to describe diffusion in such highly restricted envi-
ronments. More specifically, the signal attenuation at the employed
b-value was insignificant when the gradient orientation was perpen-
dicular to the fibers. However, the correlation coefficients across the
remaining regions demonstrate the adequacy of the hypothesized
power-law to characterize the TS of diffusion independent of the gra-
dient orientation.

We repeated the above scheme to estimate an array of 130 dw values
corresponding to different v directions isotropically distributed over the
surface of a sphere. To this end, themean-squared displacement (MSD)
values were obtained along different directions by employing the rela-
tionship MSD(v)=2D(v)Δ along with D(v)=vTDv. This scheme effec-
tively uses the diffusion tensor computed from the DTI acquisitions,
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which involve only 27measurements, to obtain a reasonable interpola-
tion of the diffusivity, henceMSD, profiles. The leftmost image of Fig. 6B
shows the variance of the dw estimates from these 130 estimates. Some
anisotropy in the dw estimates is visible in this map, particularly in the
white-matter regions of the hippocampus as well as in the pyramidal
neurons. The 130-element array of orientation dependent estimates,
dw, was used to compute a dw tensor defined through the expression
dw(v)=vTdwv. This expression was turned into a matrix equation,
and the solution, including the unique components of dwwere estimat-
ed by computing the pseudoinverse of the designmatrix. The dw tensor
was subsequently diagonalized. From left to right, the remaining three
images of Fig. 6B show the DEC maps associated with the eigenvectors
corresponding to the largest, middle, and smallest eigenvalues. The
most visible pattern is obtained within the region containing the pyra-
midal cells in the last image, which corresponds to the direction along
which the dw value is smallest; this observation may suggest that the
“special” direction associated with the diffusion process is given by
the eigenvector corresponding to the smallest eigenvalue similar to
the case of diffusion taking place in the proximity of macroscopic
walls (Özarslan et al., 2008b). In fact, theDEC informationwithin the re-
gions containing pyramidal neurons in the last image of Fig. 6B appears
to be consistent with the DTI-derived DECmap obtained from the prin-
cipal eigenvector of the diffusion tensor.

TS of anisotropy

The next question we ask is the obverse of the one asked above:
How does the anisotropy information vary with diffusion time? To
understand this, we use the same data set that includes a series of
four DTI acquisitions with different diffusion times. Unlike above
however, we process the DTI data sets separately for each diffusion
time. The results are shown in Fig. 7. In panel A of this figure, we illus-
trate the DTI-derived maps of mean diffusivity (MD), fractional an-
isotropy (FA), and DEC. The FA index is essentially a map of the
variance of the eigenvalues onto the [0,1] interval, where this map
is chosen somewhat arbitrarily to generate reasonable contrast with-
in the tissue. As shown by Özarslan et al. (2005), trace(R2), where R is
the normalized diffusion tensor obtained by dividing the diffusion
tensor by its trace, can be considered a quantity without a particular
scaling. We plot the temporal dependence of this quantity for several
regions of the hippocampus in panel B where symbols with different
colors represent the trace(R2) values for different regions shown on
the hippocampus image with matching colors. Anisotropy values
seem to increase with increasing diffusion times. Somewhat naively,
a scaling relationship of trace(R2)∝Δα was fitted to the data on a
voxel-by-voxel basis. The resulting map of α values and the corre-
sponding linear correlation coefficient map are shown in Fig. 7. The
region with pyramidal neurons stands out once again with its elevat-
ed α values. In fact, this region appears to be the only region where
the TS of diffusion anisotropy, as characterized by trace(R2) values,
consistently obeys the hypothesized power-law scaling relationship.
No significant change was observed in the temporal dependence of
the DEC maps.

Discussion

Determinants of TS

In this article, we demonstrated how the temporal scaling behav-
ior of certain quantities associated with the underlying diffusion
process can be modeled using power laws. The superb agreement
between the model and the real MRI data obtained from specimens
of excised rat hippocampi suggests the adequacy of such models.
However, the determinants of the observed scaling exponents are
yet to be understood. It is tempting to interpret the observed con-
trast within the framework of diffusion in disordered media and
fractals—the main source of inspiration for employing power-laws.
In fact, anomalous diffusion has been observed within tissues in dif-
ferent contexts using methods other than MR (Sanabria et al., 2007).
Subdiffusive behavior within the pyramidal and granule cell layers
is attributed to the complex tissue architecture within those regions.
In these layers of the rat hippocampus, water diffusion may be re-
stricted on at least 2 length scales: (i) the large neuronal cell bodies
(and potentially large nuclei) and (ii) the extremely complicated
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dendrites and synaptic boutons on the individual neuron's soma,
proximal dendrites, and axon. The theory of diffusion on comb-like
structures states that when diffusion along the backbone of a
comb-like structure is measured, the trapping of particles along
channels perpendicular to the backbone leads to anomalous diffu-
sion in the subdiffusion regime. The complicated and intricate neu-
ropil contacting neurons in the rat hippocampal cell layers could
trap water molecules in narrow channels resulting in the observed
anomalous diffusion.

However, one should be cautious that there may be other factors
that may influence the TS-contrast. For example, there is evidence
that susceptibility variations within the medium may lead to a devia-
tion of the TS behavior of the apparent MSD values from linearity
(Zupanc̆ic ̆, 1988), which is expected to be pronounced when the ac-
quisition is performed at high fields like in this study. We note that
more recent experimental results by Palombo et al. (2011) have sug-
gested the robustness of the parameter 2/dw on susceptibility differ-
ences. Another factor that should be considered is the T1 relaxation
and compartmentalization. In the acquisition of the data sets, we
employed a stimulated echo pulse sequence, which made it possible
to have the same echo time for all diffusion times. However, T1 relax-
ation is not eliminated between the second and third 90° radiofre-
quency pulses. In the presence of multiple compartments with
different T1 relaxation rates within each voxel, acquisitions with dif-
ferent diffusion times weight these compartments differently. Surface
relaxation can play a similar role because the likelihood of an interac-
tion between the confining surfaces and diffusing molecules is influ-
enced by the diffusion time (Grebenkov, 2010). These effects could
lead to variations in the TS behavior stemming from sources other
than the direct effect of diffusion. As far as diffusion is concerned,
some bias in the estimates could be introduced by the pulse duration,
which is ignored in the above analysis. Although this effect was miti-
gated to some extent by employing short (2 ms) gradient pulses, the
pulse duration is expected to be important when similar studies are
performed on clinical scanners. Despite all these complications, it is
interesting to note that the power-law behavior is prevalent through-
out the hippocampus, and that the estimated values appear to be ap-
proximately uniform in most regions of the sample. Moreover, in a
previous study (Özarslan et al., 2006b), we observed similar power-
law dependencies in very different specimens of erythrocyte ghosts
and glioblastoma multiforme tumor suggesting the applicability of
the model to very different environments. Thus, although the exact
source of the changes in the TS parameters requires further investiga-
tion, themethod can be employed to characterize the resulting appar-
ent TS characteristics.
High order moments and the collapse of the propagator

As described in the Theory section, we extended the method in-
troduced in Özarslan et al. (2006b) by fitting power-laws to higher
order moments of the diffusion propagator. The hypothesized depen-
dence seems to prevail for these higher order moments. Moreover, a
comparison of the maps generated from the temporal dependence
of these moments indicates that it is not possible to characterize the
temporal scaling of all moments via a single exponent dw, which is
implied by the functional form of the propagator given in Eq. (8). In-
stead, Eq. (11) seems to be observed with different (usually increas-
ing) dm values suggesting a multifractal nature of the structure
(Stanley and Meakin, 1988). This finding suggests that the scaling be-
havior of the propagator may be more complicated than that in
Eq. (8).

Another test for the form of the propagator in Eq. (8) involves com-
puting the inverse Fourier transform of the q-space signals for each dif-
fusion time point. This transformation is computed readily from the 1D-
SHORE coefficients thanks to the remarkable property of the basis func-
tions that each of these functions is essentially the Fourier transform of
itself (see Eqs. (18)–(19)). The resulting propagators for the voxel used
in Figs. 2 and 3 are shown in Fig. 8A. As expected, the propagators are
broadened as the diffusion time is increased. The formof the propagator
in Eq. (8) implies that all points on these curves would fall onto a single
curve if the quantity P1(z)Δd's/2z−d'f+1 is plotted against the quantity
zΔ−1/dw; the shape of this curve is given simply by the shape of the Ψ
function. The results are shown in Fig. 8B. There is an excellent agree-
ment for the smaller values of the abscissa. The deviations on the right
hand side of this plot are likely due to the temporal scaling behavior
of moments of order higher than 2, which are not accommodated by
Eq. (8).
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Fig. 8. A. The data from the voxel used in Fig. 2 is Fourier transformed into the displace-
ment domain using the 1D-SHORE framework. The curves indicate the resulting one-
dimensional propagators. B. The data points sampled in panel A are re-plotted making
use of some derived scaling relationships. The functional form of the propagator hy-
pothesized in Eq. (8) would require all data points corresponding to different diffusion
times to lie on a single curve.
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Effect of breaking the noise floor

This study demonstrated the use of a technique developed to re-
duce the undesired effects of employing magnitude valued signals
(Koay et al., 2009a). Note that the purpose of this technique is not
to reduce the noise itself. Rather, it was designed to transform the
Rician distributed signal into a Gaussian distributed signal so that
any bias introduced by taking the magnitude of the complex-valued
data is removed. An examination of the results with and without
this technique revealed that the power law dependencies prevail in
both cases. However, the correction obtained by breaking the noise
floor seems to influence the estimates for all TS parameters. The
most significant change is observed for the ds and d′s indices as data
at low signal (i.e., large q) values are most important for these param-
eters though some changes are observed in the estimates of the TS of
the moments as well. The bias removal algorithm appears to be push-
ing the estimates toward their “normal” values in most voxels thus
reducing the occurrences of TS parameters in the superdiffusive
regime.

Two-dimensional diffusion encoding

The methods employed in this study involve five-dimensional ac-
quisitions. In addition to the three spatial dimensions of each physical
image, two more dimensions are sampled by varying the wavenum-
ber (q) and the diffusion time (Δ) independently, thus yielding a
two-dimensional data set for each voxel. Such acquisitions are neces-
sary to compute all of the parameters we discussed above. In the cur-
rent study, we attempted to collect the data sets that represent a
nearly ideal case with wide ranges of Δ and q values. However, the
prospect for significantly shortening the acquisitions is apparent. As
can be noted from Figs. 1 and 2, a substantial portion of the data
sets is well within the noise region and could be excluded. Also note
that fewer q and Δ values could be sampled. In any case, reasonably
large q-values are necessary for the estimation of d′s, ds, d′f, and df
as they rely on integrals taken over the entire q-axis. On the contrary,
however, the estimation of dw requires data at low q-values only.
Clearly, this condition can be realized in most MRI scanners, including
clinical ones. In fact, 4 DTI acquisitions with different diffusion times
were sufficient to quantify not only dw but also its anisotropy. If the
contrast in the dw maps is indeed not that different from the contrast
in other TS images, as suggested by the findings in excised rat hippo-
campi, acquisitions at low q-values will be sufficient to extract all of
the desired TS information, thus making the technique practical for
clinical applications.

Further, it should be noted that the characterization of TS can be
cast as a two-dimensional reconstruction problem as can be best ap-
preciated from Fig. 8. Since the propagators corresponding to each
diffusion time and their temporal evolution are relatively featureless,
significant “compression” of the two-dimensional diffusion sampling
is expected to be feasible. Therefore, recently developed sparse recon-
struction methods such as compressed sensing (Candés et al., 2006;
Donoho, 2006) could be used to efficiently reconstruct all propagators
from very few acquisitions.

Comparison with other recent approaches to anomalous diffusion

The observation of anomalous diffusion in biological and medical
applications of MR has attracted a great deal of interest in recent
years (Gao et al., 2011; Hall and Barrick, 2008; Magin et al., 2008;
Özarslan et al., 2006b; Santis et al., 2011; Zhou et al., 2010). The pre-
sent study is based on the work introduced in Özarslan et al. (2006a,
2006b, 2006c), and applies it to imaging data with a few extensions
such as the temporal dependence of higher order moments and the
relationship between diffusion anisotropy and TS. Özarslan et al.
(2006b) differ from some of the other articles (Hall and Barrick, 2008;
Santis et al., 2011) mentioned above in a fundamental way sometimes
overlooked in some articles. Specifically, these studies assume the q-
dependence of the MR signal attenuation to be characterized by a
stretched exponential function (Kohlrausch, 1847), i.e., E(q)=exp
(−(bD)μ/2) with μb2—the same assumption employed by Köpf et al.
(1996) and Bennett et al. (2003). Since b∝q2, the exponent is propor-
tional to qμ. However, it is known that such a dependence emerges in
the characteristic function of a Lévy alpha-stable distribution, which is
a heavy-tailed distribution, i.e., its variance diverges for μ≠2 (Metzler
and Klafter, 2000). Although such a process can be regarded as “anom-
alous,” the divergence of the second moment prohibits the characteri-
zation of its temporal dependence, which we deem as the central
criterion for anomalous diffusion (see Eq. (1)). In sharp contrast, our
method allows for all moments to be finite (see Eq. (7)). In this sense,
our technique is consistent with conventional methods like the cumu-
lant expansion (Liu et al., 2003) or biexponential function fitting
(Mulkern et al., 1999) though the temporal dependence implied by
our model is different. From a practical point of view, the approach
based on stretched exponentials can be usedwith one-dimensional dif-
fusion encoding (e.g., by varying the q-values only). In fact, the
stretched exponential method mentioned above intrinsically assumes
that the dependence of the signal on q2 is identical to that for Δ since
b∝q2Δ. However, in our spectroscopic (Özarslan et al., 2006b) as well
as image acquisitions, we consistently observed that such identical de-
pendence does not exist for real tissue. In a sense, this difference in de-
pendencies is what we exploit to create new forms of MRI contrast.
Consequently, our approach demands acquisitions with different Δ as
well as q values.

We would like to note that the study by Magin et al. (2008),
wherein the authors employ fractional differential operators to relate
anomalous diffusion to the MR signal intensity, does not assume the
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dependence of the signal on q2 and Δ to be the same. Instead, the
Bloch–Torrey equation (Torrey, 1956) is generalized by fractionaliz-
ing either the spatial or the temporal derivative. The latter approach,
which was also taken by Damion and Packer (1997), yields solutions
that are consistent with Eq. (1) and to some extent with our tech-
nique. However, in real applications of the method, the authors
choose to fractionalize the spatial derivatives and fit the solutions to
data acquired by varying the q-values only (Gao et al., 2011; Zhou
et al., 2010). Since the related solutions are stretched exponential
functions of q, they correspond to processes with infinite variance.
Conclusion

In conclusion, we exploited the diffusion-time dependence of
several q-space MR derived parameters to generate new forms of con-
trast in neural tissue. Our approach employed the technique intro-
duced by Özarslan et al. (2006b) with several significant extensions.
This technique hypothesizes that parameters obey scaling relations
characterized by power-laws as is the case of fractals and disordered
media, which were shown to be obeyed in all regions of the excised
rat hippocampus. It is necessary to encode diffusion by sampling dif-
ferent diffusion times in addition to different q-values. The correction
of noise-induced bias was a challenging task and important for han-
dling such data sets. This difficulty was overcome by integrating
three recently introduced techniques Özarslan et al. (2008a), Koay
et al. (2009a, 2009b) into a multi-step procedure. The generated con-
trast appears to be novel, i.e., different from the contrast obtained in
other traditional quantities such as ADC images, and other DTI-
derived maps. Hence, we argue that such contrast may provide
unique information about the microstructure of the neural tissue,
which could be sensitive to alterations due to numerous pathologies,
development, and aging. TS contrast was observed to be reproducible
in different specimens and under different conditions, which suggests
the possibility of employing the method in population studies. Sever-
al DTI acquisitions at different diffusion times revealed some anisot-
ropy of the TS parameters in white-matter and in the region
comprising the pyramidal neurons. Diffusion in these regions was
found to be in the subdiffusion regime while the anisotropy in the lat-
ter region appeared to obey a power-law. In summary, the findings of
this study indicate that characterizing the temporal scaling of the
diffusion-related parameters via power laws could produce novel
and reproducible contrast that could complement existing MRI
markers in assessing the structure of neural tissue, thus increasing
the sensitivity and specificity of the available methods. It is too soon
to propose these fractal parameters as possible quantitative imaging
biomarkers for subtle changes in disease, degeneration, aging, etc.,
in neural tissue, but it would be worthwhile to begin performing sys-
tematic studies in different populations of subjects to test their ro-
bustness and sensitivity. Moreover, an examination of the existing
findings, e.g., in muscle tissue (Kim et al., 2005), suggests that it
would be worthwhile to begin testing these parameters in complex
tissues other than neural tissue to understand their TS properties.
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Appendix A. Signal transformational framework with regularized 1D-SHORE for breaking the noise floor

In this appendix, we outline the necessary steps needed to construct a signal transformational framework (Koay et al., 2009a) of a regularized
smoothing spline based upon the 1D-SHORE technique (Özarslan et al., 2008a, 2011).

Review of 1D-SHORE

In the 1D-SHORE technique, the diffusion-weighted MRI signal, S(q), can be expressed in the 1D-SHORE basis as

S qð Þ≈
XN−1

n¼0

anϕn q;uð Þ: ð15Þ

The basis functions are given by

ϕn q;uð Þ ¼ i−nffiffiffiffiffiffiffiffiffiffi
2nn!

p e−2π2u2q2Hn 2πuqð Þ; ð16Þ

where the characteristic length, denoted by u, is a parameter that determines the spread of the basis functions, which can be estimated from the
data, and Hn is the Hermite polynomial of order n. Note that for the application in this paper, magnitude valued data are used. Therefore, the
purely imaginary odd-ordered terms can be excluded. In this case, the i−n factor is simplified to (−1)n/2. Henceforth, we shall consider only
the cases with even n.

The basis functions ϕn(q,u) are related to the well-known solution to the simple harmonic oscillator problem in quantum mechanics and
they satisfy the equation

− 1
2πuð Þ2

∂2

∂q2
þ 2πuð Þ2q2

 !
ϕn q;uð Þ ¼ 2nþ 1ð Þϕn q;uð Þ: ð17Þ
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This eigenvalue equation has the remarkable property that its Fourier transform is of the same form up to some overall factor. Therefore, the
propagator can be reconstructed directly from the an coefficients in the same basis, i.e.,

P1 zð Þ ¼
XN−1

n¼0;2;4;⋯
anψn z;uð Þ; ð18Þ

where

ψn z;uð Þ ¼ in

u
ffiffiffiffiffiffi
2π

p ϕn z; 2πuð Þ−1
� 	

¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ1πn!

p e−z2=2u2Hn z=uð Þ: ð19Þ

In this article, we exploit the ability of the 1D-SHORE basis to represent diffusion-weighted signal profiles to estimate the scaling laws
accurately. It should be noted that the fitting described above is performed merely as a computational tool to obtain analytical and continuous
representations of the S(q) decay curves and the associated propagators. Since the fitting is performed independently for each diffusion time, no
assumption is employed for the TS behavior at this stage, and no biophysical meaning is ascribed to the estimated an coefficients. The cumulant
expansion method (Liu et al., 2003) is an alternative that also represents the propagator in terms of Hermite polynomials. However, this scheme
employs a Taylor series expansion of the characteristic function (the signal) in terms of the cumulants, resulting in a limited radius of
convergence. Reconstructing the propagator from its cumulants is known to be quite problematic (Blinnikov and Moessner, 1998); this fact
was recently discussed within the context of diffusion MR (Ghosh et al., 2010).

In the remainder of this appendix, we incorporate the 1D-SHORE technique into our recently developed framework (Koay et al., 2009a) to
correct the noise-induced bias in magnitude valued data.

Regularization

In the presence of noise, it is well known that the higher the number of basis functions used in a simple non-regularized least squares fit, the
higher the likelihood that the fit will capture spurious oscillatory trends in the data. To avoid overfitting the data, the estimation needs to be
regularized. A general strategy for solving regularized least squares problems has been well described elsewhere, e.g., see Ruppert et al.
(2003) and Wahba (1990).

The regularized 1D-SHORE estimation problem can be solved by finding a model of S(q), denoted by F(q,u)=∑n=0
N−1anϕn(q,u), such that F(q,u)

minimizes the following objective function:

XM−1

i¼0

yi−F q;uð Þð Þ2 þ λ∫∞
0 F mð Þ q;uð Þ
h i2

dq; ð20Þ

where F(m) refers to the mth order derivative of F with respect to q, yi=S(qi) is the ith measurement at the q-value of qi, and λ is the penalty pa-
rameter (or the smoothing parameter). In practice, one usually takesm to be 2 so that smoothness is favored over rapid oscillations (or larger cur-
vature). Eq. (20) can be expressed concisely in matrix form as follows:

‖y−Xa‖2 þ λaTRa; ð21Þ

where the superscript T denotesmatrix or vector transposition,y is the vector of signal values yi,X is the designmatrixwith components Xij=ϕj(qi,u),
and a is the vector of the 1D-SHORE coefficients, an. Finally, the (j,k)-component of the matrix R is given by

Rjk ¼ ∫∞
0ϕ

mð Þ
j q;uð Þϕ mð Þ

k q;uð Þdq: ð22Þ

For the specific case when m=2, it can be shown that

Rjk ¼
3 −1ð Þ

jþ k
2

ffiffiffiffiffiffiffiffiffiffi
πj!k!

p
2πuð Þ3

mþ n
2

−2
� 	

!
n−m
2

þ 2
� 	

!
m−n
2

þ 2
� 	

!
þ

−1ð Þ
jþ k
2

ffiffiffiffiffiffiffiffiffiffi
πj!k!

p
2πuð Þ3 1−2j−2kð Þ

2
mþ n

2
−1

� 	
!
n−m
2

þ 1
� 	

!
m−n
2

þ 1
� 	

!

3π7=2u3 2k2 þ 2kþ 1
� 	

;

;

j≠k

j ¼ k

8>>>>>><
>>>>>>:

ð23Þ

Note that if any of the argument of the factorials in the denominator is negative, the corresponding term will vanish. Consequently, R is a
quintdiagonal symmetric matrix. The second order derivative of the basis functions can be obtained readily from Eq. (17). The derivation of
Eq. (23) further entails evaluating integrals involving the product of three Hermite polynomials and an exponential function, which can be
found in Equation 7.375.2 of Gradshteyn and Ryzhik (2000).

The smoothed observation vector, ŷλ, is given by

ŷλ ¼ Sλy; ð24Þ

where Sλ ¼ X XTXþ λR
� 	−1

XT is known as a smoother matrix. Similar to our earlier work in Koay et al. (2009a), we will use a generalized cross
validation (GCV) function to select the optimal λ. The GCV function is defined by:

GCV λð Þ ¼ RSS λð Þ
1−trace Sλð Þ=Mð Þ2 ; ð25Þ
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whereRSS λð Þ ¼ ‖y−ŷλ‖
2. For a computationally efficient method for finding the optimal λ based on the GCV function, please refer to Appendix

C of Koay et al. (2009a).
Throughout this appendix, the parameter u has been assumed to have a certain value. However, u can also be thought of as a parameter to be

optimized during the regularization. Tofind the optimal u value, we first compute an initial estimate, u0, based upon the decay rate of the E(q) profile
near q=0. Specifically, the expression E(q)=exp(−2π2q2u02) is fitted to the first few data points with lowest q-values. This u0 estimate is used to
define our search interval, which is given by [0.7u0,1.2u0]. Finally, within this interval, the u value that minimizes the GCV is deemed optimum.

Signal transformational framework with regularized 1D-SHORE for breaking the noise floor

The basic aim of our recent signal transformational framework for breaking the noise floor (Koay et al., 2009a) is simply to transform noisy sig-
nals that follow certain Gaussian-derived distributions (e.g., Rician distribution, non-Central Chi distribution, etc.) to ensure that the transformed
signals are Gaussian distributed. This framework consists of three essential steps. First, data are smoothed with any spline model to obtain the av-
erage values of the noisy magnitude signals. Second, the “average value” of a noisy magnitude signal is mapped to the “average value” of the cor-
responding underlying signal intensity using a fixed point formula of the underlying signal intensity or the signal-to-noise ratio (Koay and Basser,
2006; Koay et al., 2009a). Here, we treat the estimations of the underlying signal intensity and of the Gaussian noise standard deviation (SD) sep-
arately. Note that we use our Probabilistic Identification and Estimation of Noise (PIESNO) technique (Koay et al., 2009b) to estimate the Gaussian
noise standard deviation. Third, the corresponding noisy Gaussian signal of each of the noisy magnitude signals is found through a composition of
the inverse cumulative probability density function of a Gaussian random variable and the cumulative probability density function of a non-Central
Chi or other specific Gaussian-derived random variable. Please refer to Koay et al. (2009a) for more in-depth discussion of this framework.

In summary, the essence of the proposed work is to use the regularized 1D-SHORE technique in the first stage of the signal transformation
framework and use it again to fit the transformed noisy signals. The end result is a sequence of 1D-SHORE coefficients corresponding to the signal
profile after the removal of bias due to noise. These coefficients are subsequently used to estimate the biophysical parameters of interest.
Appendix B. Estimation of the moments and zero-displacement
probability

Once the 1D-SHORE coefficients are computed using the scheme
outlined in Appendix A, these coefficients can be used to estimate
many different features of the diffusion process conveniently and ac-
curately. To this end, analytical relationships between the 1D-SHORE
basis functions and the desired quantities are necessary. In this work,
the TS behavior of even-order moments of the diffusion propagator is
characterized. These moments are given in terms of the 1D-SHORE
coefficients as

zm
� � ¼ um XN−1

k¼0;2;…

kþm−1ð Þ!!
k!

XN−k−1

l¼0;2;…

−1ð Þl=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k−l kþ lð Þ!

q
l=2ð Þ! akþl: ð26Þ

The probability of zero-displacements along the gradient direction
(z) is used to compute the scaling exponent d′s. This return to the xy-
plane probability can be computed using the relationship

P1 0ð Þ ¼ 1ffiffiffiffiffiffi
2π

p
u

XN−1

l¼0;2;…

−1ð Þl=2
ffiffiffi
l!

p

l!!
al: ð27Þ

Finally, as demonstrated by Özarslan et al. (2009), for an isotropic
medium, having data along a single radial line in q-space is sufficient
to reconstruct the entire three-dimensional propagator. Therefore, a
true return to origin probability (RTOP) can be computed from one-
dimensional data. It is straightforward to show that the RTOP can be
computed directly from the 1D-SHORE coefficients through the ex-
pression

RTOP ¼ 1
2πð Þ3=2u3 1þ

XN−1

n¼2;4;…

an −1ð Þn=2 n−1ð Þ!!ffiffiffiffiffi
n!

p þ 2
ffiffiffiffiffi
n!

p

n−2ð Þ!!

 !" #
: ð28Þ
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